Dr. Mahalingam College of Engineering and Technology

(An Autonomous Institution)
Pollachi - 642 003

Curriculum and Syllabus M.E. COMMUNICATION SYSTEMS

SEMESTER I to IV

REGULATIONS 2014

Department of Electronics and Communication Engineering

Regulations 2014

Revised Curriculum for M.E - Communication Systems from Semester I to IV (2018 Batch)

SEMESTER I

Course Code	Carriera Titala	Hours/Week			Credits	Marks
	Course Title		Т	Р	Credits	Warks
THEORY				*		
140CM0102	Advanced Digital Communication Techniques	3	0	0	3	100
140CM0103R	Advanced Digital Signal Processing	3	0	2	4	100
140CM0104	Microwave Circuit Design	3	0	0	3	100
140CM0105	Optical Communication Networks	3	0	0	3	100
140CM0106	Applied Mathematics for Communication Engineers	3	1	0	4	100
xxx	Elective I	3	0	0	3	100
PRACTICAL						
140CM0107	Communication System Laboratory	0	0	3	2	100
TOTAL		18	1	5	22	700

SEMESTER II

Course Code	Course Title	Hours/Week			Credits	Marks
		L	Т	Р	Credits	Marks
THEORY						
140CM0201	Wireless and Cellular Communication Engineering	3	0	0	3	100
140CM0202	Multimedia Compression	3	.0	0	3	100
140CM0203R	Advanced Radiation Systems	3	0	0	3	100
140CM0204	RF System Design	3	0	0	3	100
XXX	Elective II	3	0	0	3	100
XXX	Elective III	3	0	0	3	100
PRACTICAL						
140CM0207	RF and Networks Laboratory	0	0	3	2	100
TOTAL	2	18	0	3	20	700

Bos Chairman

HOD-Electronics and Communication Engineering

Br. Mahalingam College of Engineering and Technology

Pollachi — 642 003.

SEMESTER III

Course Code	Course Title	Hou	Hours/Week			Maulea
		L	T	Р	Credits	Marks
THEORY						
XXX	Elective IV	3	0	0	3	100
XXX	Elective V	3	0	0	3	100
xxx	Elective VI	3	0	0	3	100
PRACTICAL						
140CM0307	Project Work Phase –I	0	0	12	6	200
TOTAL	1 - 5	9	0	12	15	500

SEMESTER IV

Course Code	Course Title	Hou	Hours/Week			Marks
		L	Т	Р	Credits	Warks
140CM0407	Project Work Phase –II	0	0	24	12	400
TOTAL		-		24	12	400

Total Credits: 69

BOS Chairman

HOD-Electronics and Communication Engineering

Or, Mahalingam College of Engineering and Technology

Pollachi — 642 003.

LIST OF ELECTIVES

Course Code	Course Title	Hours/Week			0 "	0.0
		L	T	P	Credits	Marks
140CM9111	Wireless Systems and Standards	3	0	0	3	100
140CM9112	Wireless Security	3	0	0	3	100
140CM9113	DSP Processor Architecture and programming	3	0	0	3	100
140CM9114	Digital Speech Signal Processing	3	0	0	3	100
140CM9115	Network Routing Algorithms	3	0	0	3	100
140CM9116	Global Positioning Systems	3	0	0	3	100
140CM9117	Wireless Ad Hoc Networks	3	0	0	- 3	100
140CM9118	Soft Computing	3	0	0	3	100
140CM9119	Digital Communication Receivers	3	0	0	3	100
140CM9120	Wavelets and Subband Coding	3	0	0	3	100
140CM9121	VLSI Signal processing	3	0	0	3	100
140CM9122	High Performance Computer Networks	3	0	0	3	100
140CM9123	Adaptive Signal Processing	3	0	0	3	100
140CM9124	High Speed Switching Architectures	3	0	0	3	100
140CM9125	LabVIEW Based Signal Processing	3	0	0	3	100
140CM9126	Microwave Integrated Circuits	3	0	0	3	100
140CM9127	Internetworking and Multimedia	3	0	0	3	100
140CM9128	Radar and Navigational Aids	3	0	0	3	100
140CM9129	Research Methodology	3	0	0	3	100
140CM9130	VLSI for Wireless Communication	3	0	0	3	100
140CM9131	Wireless Sensor Networks Technology	3	0	0	3	100
140CM9132	Multiuser detection	3	0	0	3	100
140CM9133	Smart antennas	3	0	0	3	100
140CM9134	Spread spectrum communication	3	0	0	3	100
140CM9135	FPGA Based System Design	3	0	0	3	100

HOD-Electronics and Communication Engineering

ar, Mahalingam College of Engineering and Technology

Pollachi — 642 003.

AIM:

To provide students with a solid understanding of a number of important and related advanced topics in digital signal processing such as filters, power spectrum estimation, signal modelling and adaptive filtering.

OBJECTIVES:

On completion of the course, the student will be able to:

- Understand fundamental concepts of discrete random process.
- Compute the spectral estimation by non parametric methods
- · Apply various estimators and predictor to filters.
- Know the concepts and applications of multirate signal processing

UNIT I INTRODUCTION

(9+6)

Random process: Expectations, Moments, Ergodicity, Discrete-Time Random Processes, Stationary process, autocorrelation and auto covariance functions, Spectral representation of random signals, Properties of power spectral density, Gaussian process and White noise process, Applications—autocorrelation for identifying voiced/unvoiced speech signal.

UNIT II POWER SPECTRUM ESTIMATION

(9+6)

Introduction – Non parametric methods - Periodogram – Modified Periodogram - Bartlett, Welch & Blackman Tukey methods - Performance comparison - Parametric methods - Auto Regressive (AR) spectrum estimation - Relationship between autocorrelation and model parameters – Moving Average and Auto Regressive Moving Average spectrum estimation

UNIT III LINEAR PREDICTION

(9+6)

Model based approach - AR, MA, ARMA Signal modeling - Parameter estimation using Yule-Walker method - Least mean squared error criterion. Linear prediction and optimum linear filters, forward and backward linear prediction filters, solution of normal equations using Levinson–Durbin recursion, – Lattice realization-Wiener filter - Discrete Wiener Hoff equations – Mean square error. Applications of Wiener filter for Prediction, and noise cancellation. Introduction to Discrete Kalman Filter.

UNIT IV ADAPTIVE FILTERS

(9+6)

Introduction – Applications – System identification – Inverse modeling – Prediction - Interference Cancellation - Adaptive linear combiner – Performance function – Gradient and Minimum Mean Square error – Gradient search by the method of steepest descent – LMS algorithm – convergence of LMS algorithm – Learning curve – Misadjustment – RLS algorithm.

UNIT V MULTIRATE SIGNAL PROCESSING

(9+6)

Representation of discrete time signals – down sampling – up sampling - cascading sampling rate convertors - Decimation with transversal filters – interpolation with transversal filters – decimation with polyphase filters – interpolation with polyphase filters – decimation and interpolation with rational sampling factors - multistage implementation of sampling rate convertors. Two channel filter banks - QMF filter banks - Perfect Reconstruction Filter banks - Applications – speech and audio coding – image and video coding.

LABORATORY COMPONENT:

- 1. Voiced/Unvoiced speech signal classification using Auto correlation.
- 2. Non parametric method of power spectrum estimation
 - a. Periodogram
 - b. Modified Periodogram
 - c. Bartlett's method
 - d. Welch method
 - e. Blackman-Tukey method
- 3. Linear prediction and Noise Cancellation using Wiener filter
- 4. Adaptive noise cancellation using LMS and RLS Algorithm
- 5. Design of decimator and Interpolator and verification of Noble identities
- 6. Two channel filter banks and its application to speech signal processing

Bos Chairman

MOD-Electronics and Communication Engineering

or, Mahalingam College of Engineering and Technology

Pollachi - 642 003_

REFERENCES:

- Hayes M H, "Statistical Digital Signal Processing and Modeling", Wiley, New York, 2008.
- Simon Haykin "Adaptive Filter Theory", Fourth edition, Pearson education, 2010.
 WidrowB and Stearns S D, "Adaptive Signal Processing", Pearson education, 2009.
- 4. Fliege N J, "Multirate Digital Signal Processing", John Wiley and sons, 2010.
- 5. Vaidyanathan P P, "Multirate Systems and Filter banks", Prentice Hall, 2008.
- 6. Ifeachor E C and Jervis B. W, "Digital Signal Processing: A Practical Approach", Prentice Hall, 2009.
- 7. Lawrence R. Rabiner, Ronald W. Schafer, "Theory and Applications of Digital Speech Processing", Pearson, 2011.

WEB REFERENCE:

- 1. www.math.chalmers.se/Stat/Grundutb/CTH/mve136/1415/Complement/LectureNotes13.pdf
- 2. www.iitg.vlab.co.in/?sub=59&brch=164&sim=613&cnt=1
- 3. www.eas.uccs.edu/~mwickert/ece5655/lecture_notes/ARM/ece5655_chap8.pdf

HOD-Electronics and Communication Franchis er. Mahalingam College of Engineering and Technolog Pollachi - 642 003.

AIM:

To describe the advanced design principles used in the radiating systems and to design different types of antennas.

OBJECTIVES:

- Understand different types of antennas and sources of radiation
- Know the radiation characteristics of Aperture antenna using suitable principles
- Understand the concept of Microstrip antennas.
- Learn the different methods of antenna measurements

UNIT I ANTENNA FUNDAMENTALS

10

Antenna Radiation mechanism, Radiation pattern, near and far-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions. Radiation from surface and line current distributions – dipole, monopole, loop antenna, ImageTheory, Introduction to numerical techniques

UNIT II RADIATION FROM APERTURES

9

Field equivalence principle, Radiation Equations, Radiation from Rectangular and Circular apertures-Uniform aperture distribution on an infinite ground plane, Babinet's Principle, Slot antenna, Horn antenna, Reflector antenna.

UNIT III ARRAY ANTENNA

9

N-Element UniformLinear array-end fire and broad side array Phase andfrequency scanned arrays, Linear array synthesis techniques-Binomial and Chebyshev distributions, Smart antenna array-Benefits of Smart antennas, Types of Smart antenna, Fixed and switched beam antenna system, Adaptive Beam forming.

UNIT IV MICRO STRIP ANTENNA

8

Radiation Mechanism from patch, Excitation techniques, Microstrip dipole, Rectangular patch, Circular patch,-radiation analysis from cavity model, input impedance of rectangular and circular patch antenna, Microstrip array and feed network, Application of microstrip array antenna.

UNIT V SPECIAL ANTENNA AND MEASUREMENTS

C

Mobile phone antenna-base station, hand set antenna-PIFA, UWB antenna, BroadbandAntennas, EMI/EMC,Antenna factors, Antenna measurement and instrumentation—Antenna Ranges, Gain and Impedance measurement

REFERENCES:

- 1. Balanis.A, "Antenna Theory Analysis and Design", John Wiley and Sons, NewYork, 1982.
- 2. Krauss.J.D, "Antennas", 2nd Edition, John Wiley and sons, New York, 1997.
- 3. Bahl. I.J. and Bhartia.P., "Microstrip Antennas", Artech House, Inc., 1980
- 4. Stutzman. W.L. and Thiele. G.A., "Antenna Theory and Design", 2nd Edition, John Wiley & Sons Inc., 1998.
- 5.Liberti, JR and Theodore Rappaport, "Smart Antennas for Wireless communication" Prentice Hall of India, 1999
- 6. Ahmed El-Zooghby, "Smart Antenna Engineering" Artech House, 2008

Bos Chairman
HOD-Electronics and Communication Engineering

Or. Mahalingam College of Engineering and Technology

Poltachi - 642 003.

140CM0106 APPLIED MATHEMATICS FOR COMMUNICATION ENGINEERS 3104

AIM:

To describe the ideas of Linear algebra, linear programming and non linear programming for signal processing and Communication.

OBJECTIVES:

On completion of the course, the student will be able to:

- Introduce the fundamental ideas of linear algebra
- Understand the concepts of linear programming
- Know the importance of non linear programming

UNIT I VECTOR SPACES

(9+6)

Real vector spaces and subspaces – Linear independence - Basis and dimension – Row space, column space and null space- Rank and nullity.

UNIT II INNER PRODUCT SPACES

(9+6)

Inner products – Angle and orthogonality in inner product spaces – Orthonormal bases: Gram-Schmidt process, and QR decomposition – Best approximation: Least squares – change of basis – Orthogonal matrices.

UNIT III LINEAR TRANSFORMATIONS

(9+6)

Linear transformation- Matrix of linear transformation- diagonalization- applications to differential equations - symmetric matrices- positive definite matrices- similar matrices- singular value decomposition.

UNIT IV LINEAR PROGRAMMING

(9+6)

Formulation – Graphical solution – Simplex method – Big M method - Two phase method - Transportation problems - Assignment models.

UNIT V NONLINEAR PROGRAMMING

(9+6)

Formulation of non linear programming problem-constrained optimization with equality constraints-Graphical method of non linear programming problem involving only two variables-Kuhn Tucker conditions with non negative constraints-Wolfe's modified simplex method.

REFERENCES:

- 1. David C Lay, "Linear Algebra and its Applications", Pearson Education Asia, New Delhi, 2003.
- 2. Howard A Anton, "Elementary Linear Algebra", John Wiley & Sons, Singapore, 8th Edition, 2000.
- 3. Gupta P.K, HiraD.S, "OperationsReasearch", S.Chand& Co., 1999.
- 4. Gilbert Strang, "Linea Algebra and its Applications", Brooks/Cole Ltd ,New Delhi,3rdEditionThird edition,2003.
- 5. Seymour Lipschutz and Marc Lipson, "Schaum's Outline of Linear Algebar", McGraw Hil Trade, New Delhi, 3rd Edition, 2000.

WEB REFERENCES

http://nptel.ac.in/courses/111106051/ http://nptel.ac.in/courses/111104027/8 http://nptel.ac.in/courses/112106064/28 https://ocw.mit.edu/courses/mathematics/

BOS Chairman

HOD-Electronics and Communication Engineering

Br. Mahalingam College of Engineering and Technology

Pollachi — 642 003

